Isoparametric foliation and Yau conjecture on the first eigenvalue
نویسندگان
چکیده
منابع مشابه
The First Dirichlet Eigenvalue and the Yang Conjecture ∗
We estimate the lower bound of the first Dirichlet eigenvalue of a compact Riemannian manifold with negative lower bound of Ricci curvature in terms of the diameter and the lower bound of Ricci curvature and give an affirmative answer to the conjecture of H. C. Yang.
متن کاملNote: On Hanlon's Eigenvalue Conjecture
has conjectured an explicit formula for the eigenvalues of certain combinatorial matrices related to the cohomology of nilpotent Lie algebras. Several special cases of this conjecture are now established. 1996 Academic Press, Inc.
متن کاملThe Modularity Conjecture for Calabi-Yau Threefolds
A Calabi-Yau variety, X, of dimension n, is defined to be a smooth projective variety over a field k that satisfies ωX := ∧n Ω ' OX and H(X,OX) = 0 for 0 < j < n. This can be seen as a higher dimensional “cohomological” analogue of an elliptic curve. A Calabi-Yau threefold is a Calabi-Yau variety of dimension three. The main goal of this paper is to introduce two equivalent notions of modularit...
متن کاملReeections on the First Eigenvalue
The Laplacian is the second-order operator on functions given by (f) = ?div(grad(f)): As such, it is elliptic, self-adjoint, and is positive semi-deenite. It therefore has an L 2 basis of eigenfunctions and eigenvalues| that is, there are functions fg i g and non-negative numbers f i g such that 1 The collection of f i g's is called the spectrum of. The original interest in the Laplacian and it...
متن کامل2 2 Ju n 20 04 The First Dirichlet Eigenvalue and the Li Conjecture ∗
We give a new estimate on the lower bound for the first Dirichlet eigenvalue for the compact manifolds with boundary and positive Ricci curvature in terms of the diameter and the lower bound of the Ricci curvature and give an affirmative answer to the conjecture of P. Li for the Dirichlet eigenvalue.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 2013
ISSN: 0022-040X
DOI: 10.4310/jdg/1370979337